Descargado de AdCyM Academia de Ciencias y Matemáticas www.adcym.es

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)

Curso 2004-2005

Junio Septiembre R1 R2

MATERIA: MATEMÁTICAS APLICADAS A LAS CC. SOCIALES II

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES: El examen presenta dos opciones: A y B. El estudiante deberá elegir una de ellas y responder razonadamente a los cuatro ejercicios de que consta dicha opción. Para la realización de esta prueba puede utilizarse calculadora científica, siempre que no disponga de capacidad gráfica o de cálculo simbólico.

TIEMPO MÁXIMO: Una hora y media.

CALIFICACIÓN: Cada ejercicio lleva indicada su puntuación máxima.

OPCIÓN A

1. (Puntuación máxima: 3 puntos)

Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k

$$\begin{cases} 2x - 3y + z = 0 \\ x - ky - 3z = 0 \\ 5x + 2y - z = 0 \end{cases}$$

Se pide:

- (a) Discutir el sistema para los distintos valores de k.
- (b) Resolver el sistema en los casos en los que sea posible.
- 2. (Puntuación máxima: 3 puntos)

La función

$$B(x) = \frac{-x^2 + 9x - 16}{x}$$

representa, en miles de euros, el beneficio neto de un proceso de venta, siendo x el número de artículos vendidos. Calcular el número de artículos que deben venderse para obtener el beneficio máximo y determinar dicho beneficio máximo.

3. (Puntuación máxima: 2 puntos)

Una caja con una docena de huevos contiene dos de ellos rotos. Se extraen al azar sin reemplazamiento (sin devolverlos después y de manera consecutiva) cuatro huevos.

- (a) Calcular la probabilidad de extraer los cuatro huevos en buen estado.
- (b) Calcular la probabilidad de extraer de entre los cuatro, exactamente un huevo roto.
- 4. (Puntuación máxima: 2 puntos)

En una encuesta se pregunta a 10.000 personas cuántos libros lee al año, obteniéndose una media de 5 libros. Se sabe que la población tiene una distribución normal con desviación típica 2.

- (a) Hallar un intervalo de confianza al 80% para la media poblacional.
- (b) Para garantizar un error de estimación de la media poblacional no superior a 0,25 con un nivel de confianza del 95%, ¿a cuántas personas como mínimo sería necesario entrevistar?

Descargado de AdCyM Academia de Ciencias y Matemáticas www.adcym.es

OPCIÓN B

1. (Puntuación máxima: 3 puntos)

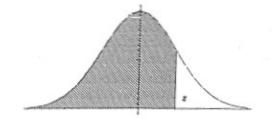
Un mayorista vende productos congelados que presenta en envases de dos tamaños: pequeño y grande. La capacidad de sus congeladores no le permite almacenar más de 1000 envases en total. En función de la demanda sabe que debe mantener un stock mínimo de 100 envases pequeños y 200 envases grandes. La demanda de envases grandes es igual o superior a la de envases pequeños. El coste por almacenaje es de 10 céntimos de euro para cada envase pequeño y de 20 céntimos de euro para cada envase grande. ¿Qué cantidad de cada tipo de envases proporciona el mínimo gasto de almacenaje? Obtener dicho mínimo.

2. (Puntuación máxima: 3 puntos)

- (a) Hallar la ecuación de la recta tangente a la gráfica de $f(x) = e^{2-x}$ en el punto donde ésta corta al eje de ordenadas.
- (b) Calcular el área del recinto limitado por la gráfica de la función $f(x) = x^2 4x$, el eje OX y las rectas x = -1, x = 4.

3. (Puntuación máxima: 2 puntos)

En un experimento aleatorio consistente en lanzar simultáneamente tres dados equilibrados de seis caras, se pide calcular la probabilidad de cada uno de los siguientes sucesos: "Obtener tres unos", "Obtener al menos un dos", "Obtener tres números distintos" y "Obtener una suma de 4".


4. (Puntuación máxima: 2 puntos)

Para una población $N(\mu, \sigma=25)$, ¿qué tamaño muestral mínimo es necesario para estimar μ mediante un intervalo de confianza, con un error menor o igual que 5 unidades, y con una probabilidad mayor o igual que 0,95 ?

Descargado de AdCyM Academia de Ciencias y Matemáticas www.adcym.es

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0.7549
0,7	0,7580	0,7611	0,7642	0.7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0.8485	0.8508	0,8531	0.8554	0,8577	0,8599	0,8621
1,1	0,8643	0.8665	0,8686	0,8708	0,8729	0.8749	0.8770	0.8790	0,8810	0.8830
1,2	0.8849	0.8869	0,8888	0,8907	0,8925	0.8944	0,8962	0.8980	0,8997	0.9015
1,3	0.9032	0.9049	0,9066	0,9082	0,9099	0.9115	0.9131	0.9147	0.9162	0,9177
1,4	0,9192	0.9207	0.9222	0,9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	0.0000	0.0015	0.0057	0.0020	0,9382	0,9394	0,9406	0,9418	0.9429	0.9441
1,5	0.9332	0,9345	0,9357	0,9370	0,9382	0,9505	0,9515	0,9525	0,9535	0,9545
1,6	0.9452	0,9463	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0.9625	0,9633
1,7	0,9554		0,9656	0,9664	0.9671	0.9678	0,9686	0,9693	0,9699	0,9706
1,8	0,9641	0,9649	0,9036	0,9004	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
1,9	0,5713	0,5715	0,5120	0,5102	0,0100	0,5144	0,0100	0,0100	0,0,01	0,0101
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0.9868	0,9871	0,9875	0.9878	0.9881	0,9884	0,9887	0.9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0.9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0.9925	0.9927	0,9929	0,9931	0.9932	0,9934	0.9936
2,5	0.9938	0.9940	0.9941	0.9943	0.9945	0,9946	0,9948	0,9949	0.9951	0,9952
2,6	0.9953	0.9954	0.9956	0,9957	0,9959	0,9960	0.9961	0.9962	0.9963	0,9964
2,7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2,8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0,9981
2,9	0,9981	0,9982	0.9982	0.9983	0,9984	0,9984	0.9985	0.9985	0,9986	0,9986
				0.0000	0.0000	0.0000	0.0000	0.0000	0.9990	0,9990
3,0	0,9987	0,9987	0,9987	0.9988	0,9988	0,9989	0,9989	0,9989	0,3330	0,5550